Exutension
 University of Wisconsin-Extension

UW Extension Holstein Steer Finishing Yardage Cost Survey

Written by: Bill Halfman, Adam Hady, Brenda Boetel, and David Kammel
Contributors: Hillary Bark and Amy Radunz

Bill Halfman, UW-Extension Agriculture Agent, M onroe County
Adam Hady, UW-Extension Agriculture Agent, Richland County
Brenda Boetel, UW-Extension Livestock and Grain M arketing Specialist and UW-River Falls Department of Ag Economics, River Falls
David Kammel, UW Biological Systems Engineering Extension Specialist, M adison
Contributors: Hillary Bark, former UW M adison Animal Science Summer Intern, and Amy Radunz, UWRiver Falls Animal and Food Science, River Falls

Reviewer: Gary Hachfeld, Farm Business M anagement Educator, University of M innesota Extension
© 2015 by Board of Regents of the University of Wisconsin System doing business as the Division of Cooperative Extension of the University of Wisconsin-Extension
An EEO/Affirmative Action employer, the University of Wisconsin Extension provides equal opportunities in employment and programming including Title IX and ADA requirements.

UW Extension Holstein Steer Finishing Yardage Cost Survey

The objective of this survey was to gather information on yardage costs of production for Wisconsin dairy steer feedlot enterprises. Information was obtained from feedlot operations feeding at least 50\% dairy steers. The data collected was producer's annual costs for finishing dairy steers from at least 300 pounds or reported higher placement weights though finishing. This data was then used to calculate costs on a daily basis.

This Holstein steer yardage survey focused on overhead, labor/management, bedding, and direct expenses generally associated with yardage costs. It did not include feed, animal, and veterinarian/ pharmaceutical related costs. This project was conducted by UW Extension and UW-River Falls and was partially funded with USDA Risk M anagement Agency grant funds.

Data was gathered by UW Extension Agriculture Agents from cooperating producers in 2012. There were 17 farm operations that had complete enough information to be included in the analysis.

Methods

Field data was collected by seven UW Extension Agriculture Agents and one summer intern using a general survey questionnaire to gather labor and bedding costs and use, and a spreadsheet that was adapted from the UW Extension Yardage Calculator (Hadley, Boetel and Halfman) to gather overhead data (cattle inventory, machinery, housing and facilities, feed storage, manure storage, etc.).

Labor and management data collected included paid and unpaid hours. Unpaid labor and management hours were hours of labor and management reported by the participants that they indicated as not paid a wage. Most of the unpaid labor and management were completed by the owner or their family, but we do not know that for sure. Wage rates were also collected from all cooperators who reported paid labor and management. For all unpaid hours of labor a wage rate of $\$ 10$ per hour was assigned. A wage rate of $\$ 15$ per hour was used for all unpaid management reported. A worksheet was prepared by Halfman that broke out tasks into daily, weekly, monthly, or less frequent tasks to help identify all the labor and management of the steer finishing operation.

Bedding data collected included type of bedding material(s) used, tonnage and cost. If farmers did not provide a cost/value due to using homegrown bedding, a standardized opportunity cost of $\$ 30$ per ton for soybean stubble, $\$ 60$ per ton for corn stalks and $\$ 90$ per ton for straw was used.

M achinery data collected was for machinery and equipment used directly in the cattle feeding enterprise, not for growing and harvesting feed. Farmers provided a percentage of time used in the cattle feeding enterprise for machinery and equipment that was used on several enterprises on the farm. Farmers were asked to provide model, size, age, estimated current market value, and years they intended to keep each piece of machinery. An ending/salvage value for the machinery and equipment, to determine straight-line depreciation, was determined using the "percentage of new list price" procedure outlined in the lowa Ag Decision M aker Fact Sheet A3-29 Estimating Farm M achinery Costs (Appendix Table 1). New list prices for machinery and equipment were obtained from implement dealers in western Wisconsin. A five percent increase was added to annual depreciation to account for the cost of machine storage if the equipment was stored inside. Area implement dealers and Hotline Farm Equipment Guide were used to determine current market prices of items that the farmers were not sure of or did not provide current market values for.

Because of large variations in the age, design, and condition of buildings and facilities on surveyed operations, no single method of determining fixed costs for those items adequately fits all situations. In an effort to standardize determination of fixed costs for facilities across operations, a replacement value for feedlot, housing, feed bunks, cattle handling, and manure storage facilities was assigned using replacement values that were provided by Dr. David Kammel, UW Extension Agriculture and BioSystems Engineer (Appendix Table 2). Grain bin values were obtained from Steel Grain Bins from the Michigan Department of Treasury (Appendix Table 3). All facilities were assumed to have a 20 year useful life and straight line depreciation was applied using the replacement cost. The justification for this procedure is that for an operation to be sustainable, it must generate enough revenue to be able to replace items when they are worn out, or pay for them over their useful life. If an item no longer has a debt assigned to it, but still has a useful life a cost should be charged to it that can be applied to replacing it, once that time is determined by the owner.

A list of related expenses typically considered part of yardage costs was collected from cooperating farms. These included, but are not limited to taxes, insurance, utilities, fuel, repairs, custom hire, interest, permits, and marketing. The cooperators were asked to report the total for the entire operation and estimate what percent of each was incurred by the cattle finishing operation.

Cattle days on feed were determined by the cooperating farms describing how many head they had on hand and how many days they would be on site. Most operations reported that they typically had a consistent number of head at the farm all year. We used the reported daily average number of cattle in inventory multiplied by 365 days to determine cattle days for farms reporting always having cattle in inventory. For farms that reported having cattle in inventory less than all year long we used the number of days reported.

Overhead costs were calculated for each operation using the data collected as described above and the data was pooled to calculate ranges and averages.

Results

There were seventeen cooperating farms with adequate data to calculate yardage costs. These operations ranged in size from 34 head on feed to 1000 head on feed. The average number of head on feed was 178 and the median was 127 head on feed. This wide range is typical of the variability of feedlot enterprise size that we see in Wisconsin.

The average yardage cost including paid and unpaid labor/management and bedding for cooperating farms was $\$ 0.96$ per head per day. The median was $\$ 0.85$ per head per day. The range was $\$ 0.47$ per head per day to $\$ 1.45$ per head per day. Table 1 is an itemized list with the ranges of costs for the different areas used to calculate yardage.

Table 1. Breakdown of Yardage Components (all costs in dollars per head per day)

Cost	Number of Farms Claiming	Low	High	Average	M edian
Taxes	15	0.00	0.08	0.02	0.02
Insurance	all	0.00	0.10	0.03	0.03
Dues and Fees	9	0.00	0.07	0.01	0.00
Intermediate and long term interest	11	0.00	0.22	0.06	0.01
Fuel and Oil	all	0.01	0.23	0.09	0.07
Utilities	14	0.00	0.07	0.02	0.02
Paid Labor	5	0.00	0.51	0.05	0.00
Paid Management	1	0.00	0.02	0.00	0.00
Unpaid Labor	16	0.00	0.44	0.19	0.17
Unpaid Management	16	0.00	0.24	0.06	0.05
Machinery Repairs	16	0.00	0.20	0.04	0.03
Facility Repairs	15	0.00	0.18	0.03	0.02
Hired Cattle Hauling	7	0.00	0.15	0.02	0.00
M iscellaneous	3	0.00	0.07	0.01	0.00
Advertising	3	0.00	0.01	0.00	0.00
Machinery depreciation and lease	all	0.00	0.13	0.05	0.04
Building/Facility depreciation \& lease	all	0.03	0.37	0.18	0.15
Bedding	16	0.00	0.25	0.08	0.09
Permits and Certifications	0				

Values in the table are rounded to the nearest cent

Chart 1 shows the yardage across the 17 farms in the survey. The costs are combined into the following similar groups; 1. Taxes, Insurance, Dues \& fees, and Interest, 2. Fuel \& oil and Utilities, 3. Paid labor and M anagement, 4. Unpaid labor and M anagement, 5. M achinery and Facility Repairs, 6. Hired Cattle Hauling, M iscellaneous, and Advertising. Machinery depreciation and leases, Building/ Facility depreciation and leases, and bedding are shown individually.

Chart 1. Yardage Costs Broken Out by Category

Summary

The average yardage of $\$ 0.96$ is more than most producers would expect. There was a wide range in variability in yardage costs across participants, which was not unexpected. This variability demonstrates the extreme importance that cattle finishers calculate their own costs and evaluate them for their strengths and areas where improvements can be made.

Acknowledgements:

The project leaders would like to thank the UW Extension Agriculture Agents who contacted cooperating farmers and collected the data, and the cooperating farmers who participated in this project.

Appendix

Appendix Table 1. Percentage Values used to Determine Salvage Values of Machinery adapted from Iowa Ag Decision M aker Fact Sheet A3-29 Estimating Farm M achinery Costs

Tractor 880 HP		Tractor 80+HP			Pickup Truck			Other Age	\% of New Similar Item		Manure Spreader			
Age	\% of New Similar Item	Age	\% of New	w Similar Item	Age	\% of New	Similar Item				Age	\% of New	Similar Item	
1	60	1	68		1	42		1	56		1	69		
2	54	2	61		2	39		2	50		2	62		
3	50	3	57		3	36		3	46		3	56		
4	46	4	53		4	34		4	42		4	52		
5	43	5	49		5	33		5	39		5	48		
6	41	6	46		6	31		6	37		6	45		
7	38	7	44		7	30		7	34		7	42		
8	36	8	41		8	29		8	32		8	40		
9	34	9	39		9	27		9	30		9	37		
10	33	10	37		10	26		10	28		10	35		
11	31	11	35		11	25		11	27		11	33		
12	29	12	33		12	24		12	25		12	31		
13	28	13	32		13	24		13	24		13	29		
14	27	14	30		14	23		14	22		14	28		
15	25	15	29		15	22		15	21		15	26		
16	24	16	28		16	21		16	20		16	25		
17	23	17	26		17	20		17	19		17	24		
18	22	18	25		18	20		18	18		18	22		
19	21	19	24		19	19		19	17		19	21		
20	20	20	23		20	19		20	16		20	20		
21	19	21	22		21	18		21	15		21	19		
22	18	22	21		22	17		22	14		22	18		
23	17	23	20		23	16		23	13		23	17		
24	16	24	19		24	15		24	12		24	16		
25	15	25	18		25	14		25	11		25	15		
26	14	26	17		26	13		26	10		26	14		
27	13	27	16		27	12		27	9		27	13		
28	12	28	15		28	11		28	8		28	12		
29	11	29	14		29	10		29	7		29	11		
30	10	30	13		30	9		30	6		30	10		
31	9	31	12		31	8		31	5		31	9		
32	8	32	11		32	7		32	4		32	8		
33	7	33	10		33	6		33	3		33	7	7	
34	6	34	9		34	5		34	3		34	6		
35	5	35	8		35	4		35	3		35	5		
36	4	36	7		36	3		36	3		36	4		
37	3	37	6		37	2		37	3		37	3		
38	3	38	5		38	1		38	3		38	2		
39	3	39	4		39	0		39	3		39	2		
40	3	40	3		40	0		40	3		40	2	2	

Other Column would include machinery like TM R mixers, feed grinders, skid loaders etc. To determine the salvage value of an item, the value of a brand new like item was multiplied by the percentage shown by age of the current item at its time of replacement.

Appendix Table 2. Building and Facility Cost Estimates Used, by Dr. David Kammel, UW Extension BioSystems Engineer

Appendix Table 2 continued

Appendix Table 2 continued

Appendix Table 2 continued

| Fencing no labor costs | | | | 2011 adjusted costs | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Woven wire | | I.f. | $\$ 1.07$ | $\$ 1.23$ | | |
| Barb wire 5 strands | | I.f. | $\$ 0.82$ | $\$ 0.94$ | | |
| H- 1 strand | | I.f. | 0.04 | $\$ 0.05$ | | |
| HT wire 8 strands | | I.f. | $\$ 0.79$ | $\$ 0.91$ | | |
| H- 1 strand | I.f. | $\$ 0.02$ | $\$ 0.02$ | | | |
| HT electric 5 strand | I.f. | $\$ 0.52$ | $\$ 0.60$ | | | |
| H- 1 strand | | I.f. | $\$ 0.02$ | $\$ 0.02$ | | |
| Polywire electric 1 strand | I.f. | $\$ 0.16$ | $\$ 0.18$ | | | |
| H- 1 strand | | I.f. | $\$ 0.03$ | $\$ 0.03$ | | |
| Polytape | I.f. | $\$ 0.21$ | $\$ 0.24$ | | | |
| | | | | | | |
| Source: IA state | | | | | | |
| Estimated costs for livestock fencing 2005 costs | | | | | | |

Appendix Table 3

STEEL GRAIN BINS

Source: M ichigan Department of Treasury, 2003

